\qquad
\qquad

Decomposing Polygons to Find Area

Directions: Decompose each polygon into rectangles and triangles to find the area.

1. Section the shape into rectangles and/or triangles.
2. Find the area of each rectangle and triangle.
3. Find the total area of the polygon.

Key- One possible solution is given. However students may solve each problem in various ways.

Decomposing Polygons to Find Area

Directions: Decompose each polygon into rectangles and triangles to find the area.

1. Section the shape into rectangles and/or triangles.
2. Find the area of each triangle and rectangle.
3. Find the total area of the polygon.

Section into rectangles or triangles.	Work Space (1) $6 \mathrm{~cm} \times 6 \mathrm{~cm}=36 \mathrm{~cm}^{2}$ (2) $6 \mathrm{~cm} \times 6 \mathrm{~cm}=36 \mathrm{~cm}^{2}$ $36 \mathrm{~cm}^{2}+36 \mathrm{~cm}^{2}=72 \mathrm{~cm}^{2}$ Total Area $=72 \mathrm{~cm}^{2}$	
Section into rectangles or triangles.	Work Space (1) $8 i n * 4 i n=32 i n^{2}$ (2) $\begin{aligned} & \frac{6 i n *(11 i n-8 i n)}{2}= \\ & \frac{6 i n * 3 i n}{2}=9 \mathrm{in}^{2} \\ & 32 \mathrm{in}^{2}+9 \mathrm{in}^{2}=41 \mathrm{in}^{2} \end{aligned}$	4. Section into rectangles or triangles.
	Total Area $=41 \mathrm{in}^{2}$	(1) Work Space $6 \mathrm{in} * 8 \mathrm{in}=48 \mathrm{in}^{2} \quad \frac{6 \mathrm{in} * 4 \mathrm{in}}{2}=12 \mathrm{in}^{2}$ (2) (5) $\frac{4 i n * 3 i n}{2}=6 i^{2}$ $(4 i n)^{2}=16 i n^{2}$ (3) $\frac{(4 i n+5 i n) *(8 i n-4 i n)}{2}=\frac{9 i n * 4 i n}{2}=18 i^{2}$ Total Area $=48 \mathrm{in}^{2}+6 \mathrm{in}^{2}+18 \mathrm{in}^{2}+12 \mathrm{in}^{2}+16 \mathrm{in}^{2}=100 \mathrm{in}^{2}$

